Urban land-cover classification based on airborne hyperspectral data and field observation
نویسندگان
چکیده
Using a dataset from the 2013 IEEE data fusion contest, a basic study to classify urban land-cover was carried out. The spectral reflectance characteristics of surface materials were investigated from the airborne hyperspectral (HS) data acquired by CASI-1500 imager over Houston, Texas, USA. The HS data include 144 spectral bands in the visible to near-infrared (380 nm to 1050 nm) regions. A multispectral (MS) image acquired by WorldView-2 satellite was also introduced in order to compare it with the HS image. A field measurement in the Houston’s test site was carried out using a handheld spectroradiometer by the present authors. The reflectance of surface materials obtained by the measurement was also compared with the pseudo-reflectance of the HS data and they showed good agreement. Finally a principal component analysis was conducted for the HS and MS data and the result was discussed.
منابع مشابه
Hyperspectral Sensor Data Capability for Retrieving Complex Urban Land Cover in Comparison with Multispectral Data: Venice City Case Study (Italy)
This study aims at comparing the capability of different sensors to detect land cover materials within an historical urban center. The main objective is to evaluate the added value of hyperspectral sensors in mapping a complex urban context. In this study we used: (a) the ALI and Hyperion satellite data, (b) the LANDSAT ETM+ satellite data, (c) MIVIS airborne data and (d) the high spatial resol...
متن کاملUrban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data
Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...
متن کاملUrban Land Cover Classification Using Hyperspectral Data
Urban land cover classification using remote sensing data is quite challenging due to spectrally and spatially complex urban features. The present study describes the potential use of hyperspectral data for urban land cover classification and its comparison with multispectral data. EO-1 Hyperion data of October 05, 2012 covering parts of Bengaluru city was analyzed for land cover classification...
متن کاملSynergistic Use of LiDAR and APEX Hyperspectral Data for High-Resolution Urban Land Cover Mapping
Land cover mapping of the urban environment by means of remote sensing remains a distinct challenge due to the strong spectral heterogeneity and geometric complexity of urban scenes. Airborne imaging spectroscopy and laser altimetry have each made remarkable contributions to urban mapping but synergistic use of these relatively recent data sources in an urban context is still largely underexplo...
متن کاملAn Object-based Approach to Quantity and Quality Assessment of Heathland Habitats in the Framework of Natura 2000 Using Hyperspectral Airborne Ahs Images
Straightforward mapping of detailed heathland habitat patches and their quality using remote sensing is hampered by (1) the intrinsic property of a high heterogeneity in habitat species composition (i.e. high intra-variability), and (2) the occurrence of the same species in multiple habitat types (i.e. low inter-variability). Mapping accuracy of detailed habitat objects can however be improved ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014